If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/9^a+1=81^a
We move all terms to the left:
1/9^a+1-(81^a)=0
Domain of the equation: 9^a!=0We multiply all the terms by the denominator
a!=0/1
a!=0
a∈R
-81^a*9^a+1*9^a+1=0
Wy multiply elements
-729a^2+9a+1=0
a = -729; b = 9; c = +1;
Δ = b2-4ac
Δ = 92-4·(-729)·1
Δ = 2997
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2997}=\sqrt{81*37}=\sqrt{81}*\sqrt{37}=9\sqrt{37}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9\sqrt{37}}{2*-729}=\frac{-9-9\sqrt{37}}{-1458} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9\sqrt{37}}{2*-729}=\frac{-9+9\sqrt{37}}{-1458} $
| 8x+31+16x-9=180 | | 2/3x-4x=-15 | | 9/8p=27 | | 129+21+3x=180 | | 7(3^x)=189 | | 5^x+3=29 | | 7(7^x)=189 | | 2y=21/4=81/4 | | x*x*x+2x*x+4x-3=0 | | g-5+3=1 | | 3y-7=-8 | | y/3-8=7 | | 2x^2+4x-0=0 | | b+3b=16 | | (2x+25)+(2x-20)+x=180 | | -10=-2(w-4) | | Y+3=6(x—9) | | 15j+3j=-18 | | 2p^2=4 | | 3×+2y=19 | | (5x-3)-(4x-9)=0 | | 4(v+3)=20 | | 24x2+9x4+-2X6=0 | | √25=x | | x+1/2x=0 | | 14√x+15=71 | | 40=3w+16 | | 3x^2+10.25x-7=0 | | 4a-3a+5=20 | | 3x^2+41/4x-7=0 | | -s+-3s+-15=17 | | 3a-2a=16 |